Energy-aware adaptive bi-Lipschitz embeddings

نویسندگان

  • Bubacarr Bah
  • Ali Sadeghian
  • Volkan Cevher
چکیده

We propose a dimensionality reducing matrix design based on training data with constraints on its Frobenius norm and number of rows. Our design criteria is aimed at preserving the distances between the data points in the dimensionality reduced space as much as possible relative to their distances in original data space. This approach can be considered as a deterministic Bi-Lipschitz embedding of the data points. We introduce a scalable learning algorithm, dubbed AMUSE, and provide a rigorous estimation guarantee by leveraging game theoretic tools. We also provide a generalization characterization of our matrix based on our sample data. We use compressive sensing problems as an example application of our problem, where the Frobenius norm design constraint translates into the sensing energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Bi-Lipschitz embeddings of bounded curvature manifolds and orbifolds

We construct bi-Lipschitz embeddings into Euclidean space for bounded diameter subsets of manifolds and orbifolds of bounded curvature. The distortion and dimension of such embeddings is bounded by diameter, curvature and dimension alone. We also construct global bi-Lipschitz embeddings for spaces of the form Rn/Γ , where Γ is a discrete group acting properly discontinuously and by isometries o...

متن کامل

Almost Bi-lipschitz Embeddings and Almost Homogeneous Sets

This paper is concerned with embeddings of homogeneous spaces into Euclidean spaces. We show that any homogeneous metric space can be embedded into a Hilbert space using an almost bi-Lipschitz mapping (biLipschitz to within logarithmic corrections). The image of this set is no longer homogeneous, but ‘almost homogeneous’. We therefore study the problem of embedding an almost homogeneous subset ...

متن کامل

On the Relative Schoenflies Theorem

We prove generalizations of the relative Schoennies extension theorem for topo-logical, quasiconformal, or bi-Lipschitz embeddings due to Gauld and VV aiss all a, and show that maximal dilatations and bi-Lipschitz constants of the extensions can be controlled.

متن کامل

Massachusetts Institute of Technology Lecturer : Michel X . Goemans

The aim of this lecture is to outline the gluing of embeddings at different scales described in James Lee’s paper Distance scales, embeddings, and metrics of negative type from SODA 2005 [1]. We begin by recalling some definitions. A map f : X → Y of metric spaces (X, dX ) and (Y, dY ) is said to be C-Lipschitz if dY (f(x), f(y)) ≤ CdX(x, y) for all x, y ∈ X. The infimum of all C such that f is...

متن کامل

Low-distortion embeddings of infinite metric spaces into the real line

We present a proof of a Ramsey-type theorem for infinite metric spaces due to Matoušek. Then we show that for every K > 1 every uncountable Polish space has a perfect subset that K-bi-Lipschitz embeds into the real line. Finally we study decompositions of infinite separable metric spaces into subsets that, for some K > 1, K-bi-Lipschitz embed into the real line.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.3457  شماره 

صفحات  -

تاریخ انتشار 2013